Users Online: 105 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size


Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2010  |  Volume : 54  |  Issue : 2  |  Page : 98-103

Association of air pollution and mortality in the Ludhiana city of India: A time-series study

1 School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
2 Punjab University, Chandigarh, India
3 Dayanand Medical College, Ludhiana, Punjab, India

Correspondence Address:
Rajesh Kumar
School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab
Login to access the Email id

Source of Support: None, Conflict of Interest: None

PMID: 21119243

Rights and PermissionsRights and Permissions

Background : With rapid industrialization, the quality of the air is being compromised in several Indian cities. Hence, the effect of air pollution on mortality was studied in the Ludhiana city of Punjab in northern India. Materials and Methods: Air quality and meteorological and mortality data were obtained for 2002-2004. Punjab Pollution Control Board monitored air quality on specific week days at different sites. Respirable suspended particulate matter (RSPM) (equivalent of PM 10 ) was measured by the gravimetric method and NOx and SO 2 by chemical method. The estimation of the daily average RSPM level was attempted by combining 24-h average of the monitoring stations working on a particular day. Sahnewal Airport records temperature, dew point, and relative humidity at 8.30 am, 11.30 am, and 5.30 pm. Visibility of fixed landmarks is observed manually every hour from 6.30 am to 6.30 pm. Daily death records were obtained from the civil registration system. The association between visibility as proxy for RSPM and mortality was established using the generalized additive model (GAM) with natural spline smoothers at 6, 3, 3 df in R software with deaths (excluding accidents) as a dependent variable. Smoothers for day of the week, temperature, and relative humidity were also included in the model. Results: Air quality monitoring days for different monitoring stations ranged from 86 to 138 per year. The annual mean RSPM ranged from 226.7 to 269 μg/m 3 , SO 2 from 11.6 to 20.9 μg/m 3 , and NOx from 32.2 to 46.3 μg/m 3 . The mean (SD) temperature was 25.6 (7.9)°C, relative humidity was 58.1 (19.3)%, and visibility was 3398 (1418) m. Overall 28,007 deaths were registered, with an average of 25.4 deaths (SD 5.8) per day. The association between air quality as indicated by visibility (haze) and daily mortality was found to be statistically significant. For every 1 km decrease in visibility at midday, mortality due to natural causes increased by 2.4%. Conclusions: In Ludhiana, air pollution levels were quite high. The air quality (as measured by visibility) was significantly associated with mortality.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded662    
    Comments [Add]    
    Cited by others 4    

Recommend this journal